Conditions for strong ellipticity and M - eigenvalues ∗

نویسندگان

  • Liqun QI
  • Hui-Hui DAI
  • Deren HAN
چکیده

Abstract The strong ellipticity condition plays an important role in nonlinear elasticity and in materials. In this paper, we define M-eigenvalues for an elasticity tensor. The strong ellipticity condition holds if and only if the smallest M-eigenvalue of the elasticity tensor is positive. If the strong ellipticity condition holds, then the elasticity tensor is rank-one positive definite. The elasticity tensor is rank-one positive definite if and only if the smallest Z-eigenvalue of the elasticity tensor is positive. A Z-eigenvalue of the elasticity tensor is an M-eigenvalue but not vice versa. If the elasticity tensor is second-order positive definite, then the strong ellipticity condition holds. The converse conclusion is not right. Computational methods for finding M-eigenvalues are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on Explicit Strong Ellipticity Conditions for Anisotropic or Pre-stressed Incompressible Solids

We present a set of explicit conditions, involving the components of the elastic stiffness tensor, which are necessary and sufficient to ensure the strong ellipticity of an orthorhombic incompressible medium. The derivation is based on the procedure developed by Zee and Sternberg (Arch. Rat. Mech. Anal. 83 (1983)) and, consequently, is also applicable to the case of the homogeneously pre-stress...

متن کامل

3-by-3 matrices with elliptical numerical range revisited

According to Kippenhahn’s classification, numerical ranges W (A) of unitarily irreducible 3 × 3 matrices A come in three possible shapes, an elliptical disk being one of them. The known criterion for the ellipticity of W (A) consists of several equations, involving the eigenvalues of A. It is shown herein that the set of 3× 3 matrices satisfying these conditions is nowhere dense, i.e., one of t...

متن کامل

Necessary and Sufficient Conditions for Strong Ellipticity of Isotropic Functions in Any Dimension

We consider hyperelastic stored energy functions in Rn×n that are isotropic. We give necessary and sufficient conditions for the ellipticity of such functions. The present article is essentially a review of recent results on the subject.

متن کامل

Ela 3-by-3 Matrices with Elliptical Numerical Range Revisited

According to Kippenhahn’s classification, numerical ranges W (A) of unitarily irreducible 3 × 3 matrices A come in three possible shapes, an elliptical disk being one of them. The known criterion for the ellipticity of W (A) consists of several equations, involving the eigenvalues of A. It is shown herein that the set of 3× 3 matrices satisfying these conditions is nowhere dense, i.e., one of t...

متن کامل

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009